Presión de Vapor SaturadoSi en un contenedor cerrado tiene lugar el proceso de la evaporación, llegará un momento en que haya tantas moléculas regresando al estado líquido, como las que escapan al estado de gas. En este punto, se dice que el vapor está saturado, y la presión de ese vapor (normalmente expresado en mmHg), se llama presión de vapor saturado.
|
Índice Conceptos sobre Teoría Cinética Aplicaciones sobre Teoría Cinética Conceptos de Aplicación de Vapor | ||||
|
Atrás |
EvaporaciónLa evaporación ordinaria es un fenómeno superficial -algunas moléculas tienen suficiente energía cinética para escapar-. Si el contenedor está cerrado, se alcanza un equilibrio donde un número igual de moléculas vuelven a la superficie. La presión de este equilibrio se llama presión de vapor de saturación.
|
Índice Conceptos sobre Teoría Cinética Aplicaciones sobre Teoría Cinética Conceptos de Aplicación de Vapor | ||
|
Atrás |
Evaporación vs EbulliciónLa evaporación ordinaria es un fenómeno de superficie. Como la presión de vapor es baja, y dado que la presión en el interior del líquido es igual a la presión atmosférica mas la presión del líquido, no se pueden formar burbujas de vapor de agua. Pero en el punto de ebullición, la presión de vapor saturado es igual a la presión atmosférica, se forman las burbujas, y la vaporización se constituye en un fenómeno de volumen. |
Índice Conceptos sobre Teoría Cinética Aplicaciones sobre Teoría Cinética Conceptos de Aplicación de Vapor | ||
|
Atrás |
Punto de Ebullición
|
Índice Conceptos sobre Teoría Cinética Aplicaciones sobre Teoría Cinética Conceptos de Aplicación de Vapor | |||||
|
Atrás |
Variación del Punto de EbulliciónEl punto de ebullición estándar del agua de 100°C, se produce a la presión atmosférica estándar de 760 mmHg. La experiencia de los excursionistas de alta montaña, les enseña que los alimentos tardan mas tiempo en cocinarse, debido a que el punto de ebullición del agua es menor. Por otro lado, los alimentos se cocinan mas rápidamente en una olla a presión, debido a su mas elevado punto de ebullición. Elevando o disminuyendo la presión unos 28 mmHg, cambia el punto de ebullición en 1°C. Aunque la variación de presión de vapor con la temperatura no es lineal, la variación del punto de ebullición cerca de los 100ºC., se puede aproximar con un ajuste empírico de los datos disponibles. Esto nos puede proporcionar la siguiente estimación del punto de ebullición: Se puede cambiar cualquiera de los valores de datos de arriba. El cálculo empírico es válido solamente para unos pocos grados por encima y por debajo del punto normal de ebullición.Notas: Este cálculo asume una temperatura del aire de 20°C y una masa media de molécula de aire de 29 uma. La presión atmosférica cae un poco mas rápido con la altura, cuando el aire está mas frío, pero el cambio no es grande sobre un rango de temperaturas del dia razonable. Si se ponen valores de presión por encima de la atmosférica, se obtienen valores razonables del punto de ebullición, dentro de un estrecho rango alrededor del valor normal, pero los valores obtenidos para altitudes negativas no son válidos.
|
Índice Conceptos sobre Teoría Cinética Aplicaciones sobre Teoría Cinética Conceptos de Aplicación de Vapor | ||||
|
Atrás |
Variación del punto de Ebullición Cerca de 100ºCLos valores se tomaron de la tabla de presión de vapor saturado para el agua, cerca de los 100 grados Celsio. Se hicieron unos ajustes empíricos a estos valores de los datos, y la fórmula obtenida se muestra en el diagrama. Se podría considerar razonablemente válida para unos pocos grados por encima y por debajo de 100ºC, puesto que la curva no es muy lineal.
|
Índice Conceptos sobre Teoría Cinética Aplicaciones sobre Teoría Cinética Conceptos de Aplicación de Vapor | ||
|
Atrás |