La Desviación Típica

La desviación de la raiz cuadrada de la media de x (valor esperado), de su promedio, se llama desviación típica. En un conjunto de medidas discretas, la desviación típica toma la forma

para medidas discretas de x

y

para un continuo x
donde < > implica promedio.

Para determinar el promedio o el valor esperado (media) en la expresión de arriba, tenemos que hacer uso de la siguiente función de distribución de la variable


Ejemplo de Partícula Libre en una Caja
Índice

Conceptos de Estadística Aplicada
 
HyperPhysics*****HyperMath*****ÁlgebraM Olmo R Nave
Atrás





Desviación Típica para la Posición de la Partícula

Una partícula libre, que está restringida a estar entre las posiciones x=0 y x=L tiene una función de distribución que es exactamente una constante. La fórmula para la desviación típica de la posición es la raiz cuadrada de la integral


Normalizando la distribución, da el valor de C.


El valor medio de x es


Usando esto, la desviación típica viene a ser


El promedio de la raiz cuadrada es


El resultado de la desviación típica para la partícula libre es


Cálculo usando Caja en 3-D
Índice

Funciones de Distribución

Conceptos de Estadística Aplicada
 
HyperPhysics*****HyperMath*****ÁlgebraM Olmo R Nave
Atrás