SuperconductivityIf mercury is cooled below 4.1 K, it loses all electric resistance. This discovery of superconductivity by H. Kammerlingh Onnes in 1911 was followed by the observation of other metals which exhibit zero resistivity below a certain critical temperature. The fact that the resistance is zero has been demonstrated by sustaining currents in superconducting lead rings for many years with no measurable reduction. An induced current in an ordinary metal ring would decay rapidly from the dissipation of ordinary resistance, but superconducting rings had exhibited a decay constant of over a billion years! One of the properties of a superconductor is that it will exclude magnetic fields, a phenomenon called the Meissner effect. The disappearance of electrical resistivity was modeled in terms of electron pairing in the crystal lattice by John Bardeen, Leon Cooper, and Robert Schrieffer in what is commonly called the BCS theory. A new era in the study of superconductivity began in 1986 with the discovery of high critical temperature superconductors. |
Index Superconductivity concepts | ||
|
Go Back |
Critical Temperature for Superconductors
|
Index Superconductivity concepts Reference Rohlf,Ch 15 | ||||||||||||||||||||||||||
|
Go Back |
Types I and II SuperconductorsThere are thirty pure metals which exhibit zero resistivity at low temperatures and have the property of excluding magnetic fields from the interior of the superconductor (Meissner effect). They are called Type I superconductors. The superconductivity exists only below their critical temperatures and below a critical magnetic field strength. Type I superconductors are well described by the BCS theory. Starting in 1930 with lead-bismuth alloys, a number of alloys were found which exhibited superconductivity; they are called Type II superconductors. They were found to have much higher critical fields and therefore could carry much higher current densities while remaining in the superconducting state. The variations on barium-copper-oxide ceramics which achieved the superconducting state at much higher temperatures are often just referred to as high temperature superconductors and form a class of their own. |
Index Superconductivity concepts | ||
|
Go Back |
Type I SuperconductorsThe 27 pure metals listed in the table below are called Type I superconductors. The identifying characteristics are zero electrical resistivity below a critical temperature, zero internal magnetic field (Meissner effect), and a critical magnetic field above which superconductivity ceases.
*Gd at Tc=1.1 is questionable. Source is Rohlf, Ch 15, but this may be a misprint. Ga has Tc about 1.1, so Ga value may have been attributed to Gd. **"Superconductivity of Hexagonal Beryllium'" R.L. Falge Jr., Physics Letters A 24 1967.
|
Index Superconductivity concepts Reference Rohlf Ch 15 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Go Back |
Type II Superconductors
|
Index Superconductivity concepts Reference: Blatt, Modern Physics | ||||||||||||||||||||||||||||||||||
|
Go Back |